July 20, 2020

Can predictive analytics capabilities get front-line health services off the back foot?

Bingqian Gao
Bingqian Gao Data Science Lead

Business challenge:

Analytics for Healthcare
Predictive Analytics

Industry:

Healthcare

The unexpected arrival of COVID-19 has stretched the capacity of hospitals and health services to treat those in need. 

As service demand increases, healthcare professionals are looking for opportunities to relieve pressure on front-line staff and the back office. To effectively identify these opportunities heavily relies on the intelligent use of your organisation’s data, methods such as predictive analytics, and collaboration between IT, data and technology team and the field services team. 

On Tuesday 16th June, I had the pleasure of joining a live webinar discussion, with several thought leaders from across the healthcare space.

These included Karen Taylor, Director at Deloitte Centre for Health Solutions, George Kapetanakis, Chief Technology Officer at CareRooms and Sam Shah, Global Digital Adviser and NHS Clinician.

We were brought together by the organisers of the Digital Healthcare Showto discuss the impact of technology in the healthcare system, and what healthcare organisations can and should be doing with their data, to create forward-looking insights that minimise the current stretch in workload.

The agenda focused on 5 key themes:  

  • The role technology and AI has played in the current pandemic, and technology changes introduced to the healthcare system 
  • The current landscape of predictive analytics in healthcare, and what we can learn from other industries that have more experience using machine learning  
  • How the healthcare system today embraces new technologies like tele-consultation and remote monitoring-caring of patients 
  • The challenges and barriers to implement technology and AI in healthcare and how to address them 
  • Ethics in using patients’ data for analysis and prediction 

Lastly, I shared 4 main takeaways for practitioners that are interested in implementing Predictive Analytics / Machine Learning / Data Science solutions in Healthcare (or other industries), which I hope you find useful: 

1. Data foundation is important, in healthcare more than other industries where the margin for error is lower. Data integrity directly affects the validity of the analyses and the impact of the conclusions drawn. 

2. Think about where you are at the Analytics Maturity journey. Get the Data Consolidation and Quality Assurance, Reporting and Descriptive/Diagnostic Analytics in shape if you haven’t already before diving into Predictive Analytics (but it doesn’t mean you can’t start thinking about it – see point 3). 

3. Identify business use cases (you can look at the application in other industries for inspiration), and try to get validation on the approach and data requirement (start thinking about this early – it might take months or even years to collect the relevant data but you need to know what to collect first!) 

4. Build the business case, and think through the implications and actions driven by the results. This is where the real impact takes place, and is also where Ethics topics become most pressing and substantial.

Business challenge:

Analytics for Healthcare
Predictive Analytics

Industry:

Healthcare
Bingqian Gao
Written by Bingqian Gao Data Science Lead

Bingqian believes in the power of Analytics and Data Science in uncovering insights and helping to better inform decision making. As a Senior Consultant and Data Science Lead at TrueCue, she enjoys finding solutions for challenges in data consolidation, modelling, visualisation and Advanced Analytics.

She leverages modern technology such as Alteryx, Tableau, DataRobot, and Microsoft Azure Machine Learning, and is one of the 17 Certified Alteryx Experts in the world. Outside of work, she enjoys a wide range of activities, from oil painting, poetry reading, scuba diving, to boxing and krav maga.

Case Study: Fighting COVID-19 with Data

Learn about how we’re helping the largest Sustainability and Transformation Partnership in the NHS, to use data analytics to improve their response to COVID-19 and save lives.

Download Case Study